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DISPERSION MAPPING THEOREM S (J)

R. Creighton Buck

Technical Summary Report *1994
Sep tember 1979 \

ABSTRACT

Let X, Y and Z be metric spaces, with X compact and Y of lower

dimension than either X or Z. Let C(X,Z) be the class of continuous

mappings F from X into Z, and the subclass of those F that  can be

factored through Y in the form F = f 0 ~ where ~ ~ C[X,Y]. Using

s-entropy, uniform estimates are obtained for the maximal size of point

inverses ~~
1
(y) , for arbitrary ~~, and for spacial choices of Y. These

are then used to study the size of the uniform closure of in C[X ,ZJ,

and thus the class of mappings F between X and Z that can be

approximated uniformly by a special family of simpler mappings. Similar

results are obtained when f is required to be Lipschitz, but ~ is

unrestricted .

ANS (MOB) Sublect Classifications: 05C15, 26A72, 26A16, 41A30 , 41A65 , 54C05

Key Words: mapping, complexity ,  entropy dimension , ~ —d ispersed , Lipschitz

mapping, point-inverse , graph theory , chromatic
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SIGNIFICANCE AND EXPLANATION

‘I
A function of three variables is often regarded as inherently simpler

than a function of five var iables , and there has been much attention given to

the nature of complicated functions that can be expressed exactly in various

ways in terms of simpler functions. From the viewpoint of computation ,

however , it is sufficient if a function F can be approximated arbitrarily

well by combinations of simple functions. This paper deals with the general

structure of this process, and obtains specific theorems that help to describe

its limitations, and necessary conditions on the functions F for which this

is possible. More detailed applications will be made in the future.
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DISPERSION MAPPING THEOREMS

R. Creighton Buck

1. Introduction

Many familiar mathematical questions can be restated in the following

form : “ When is A more complex than B, and how do you put the answer in

quant i ta t ive  form?” This has been an swered in a variety of ways , depending on

the category to which A and B belong. Two recursive funct ions have ~eer~

compared by their index numbers in any universal l isting (Kolmogorov : see

[7]). In classical analysis , a function of three real variables seems more

complicated than a function of only two , while a function with continuous

fourth derivatives seems simpler than one that is merely continuous .

Vitushkiri discovered that the index n/p is a useful measure of the

complexity of t’:e entire class of functions of n real variables having

continuous p—th derivatives [4;5). However , this approach is not

appropriate if one is deal ing with functions that are merely continuous

(p = 0 ) ,  or when one is dealing with individual functions and not classes.

Moreover , one would like to use the term “simple” for functions that can be

approximated arbitrarily well by simple functions , even though they themselves

are not “simple”.

Nor is it enough merely to count the number of variables. A function of

the form

( 1 )  F( x ,y, z )  = f(g(x ,y) , h ( y , z)

is a function of three real variables, but since it is built from func tions of

Sponsored by the United States Army under Contract No. DAAG29-75—C-(’W24 and
the National Science Foundation unde r Grant No. MCS78-07244 .
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two variables , it oug ht to be quant i ta t ive ly  simpler than the general

continuous funct ion of three variables .

Several years ago , I observed that such questions can also be stated in

terms of mapping diagrams. (See [1].) For example , consider those functions

of five variables that can be represented in the format

(2) Fcx ,y,z,u ,v) = f(~~(x,y,z), u,v)

in terms of continuous functions of only three variables. First suppress

(u ,v) by introducing Z = C[R~ ] ,  and writing F(x ,y,z,u ,v) as

F(x ,y,z)(u ,v), so that F is now seen as a function from R3 to Z. Then ,

(2) requires that F = f 0 ~ where 4 is a continuous function from R3 to

R and f is a continuous function from R to Z. Thus, (2) asks us to

examine those maps F from R3 to z which can be factored through R, as

shown in the diagram below:

R 3

Other examples can be treated in a similar way. For example, to examine

1 ),  f i rs t  introduce special maps ~ from R
4 

to R2 of the fo rm

~(t1
,t
2
,t
31t4

) = (g(t
1
,t
2
), h(t

3
,t
4
)):

2 2 4R x R = R

~ 
h ,~ 

=

Then construct x c p4 , homeomorphic to R3, by the special embedding

(x ,y,z) -, ( x , y , y , z ) .  Then, the class of mappings F with the special

representation (1) can be regarded as those maps of X to R which factor

through R2 by one of the special maps ~~~, as - shown below :

- 

S



X

~ camination of these suggests that one study a general factoring

problem . choose spaces X, Y, and Z , and then within the class Ct X , Z~ of

all continuous mapp ings F from X into Z we ident i fy  the subclass of

those F that can be factored through Y, F = f 0 ~~, regarding these as

“simple ”.

X

The obj ecive is to f ind properties that are characteristic of the maps in

and of those mappings that can be approximated uniformly by mappings in

In particular, we would like to know conditions on X, Y , and Z that

guarantee that F~ is a small subset of C[X , Z j ,  and find quantitative

estimates for the size of

The results in the present paper are onl y a beginning, intended to show

that useful theorems can be obtained in a number of cases , related directly to

problems dealing with the approximate complexity of functions. The approach

is via Kolmogoroff s—entropy and entropy dimension , and some of the results

obtained in Section 3 on dispersion functions may have wider usefulness in the

study of continuous mappings; the combinatorial lei~ina on colored graphs may

also be of interest, as may be the observtions on dimension increasing maps in

Section 5.

t.4 p-• 4
— 3 —  LI ‘

- —I. . - - -~‘= .= 5- - SA.-- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

I

— — -5- — - 5. 

~~~~~~~~~ ~~~~~~~~~ — -
~~~~i~

:- 
~~~~~~~~~~~ 

- . - 
~~~~

‘
~~~~

-
~~~~~

-—--



2. Heuristic arguments

Let X and Y be metric spaces and C{X ,Y the space of all continuous

maps f rom X into Y , with the uniform metric . We regard Y as simpler

than X if Y can be faithfully embedded in X but not conversely. In this

case , any ~ € c[X ,Y] must fail to be i—to— i , and must therefore compress

some complex aspect of X. If C(S) is an appropriate quantitative measure

of the complexity of subsets S of X , then since

x = Li ~~~~~~ 

~zy LY

we are led to hope that 
-

c(X) = {c(Y)} x ~average value of c($
1
y)}

and dividing by c(Y), that

( 3 )  — 1 c ( X )max c(~~ y) > -
~~i-:i;-yy CY

Note that the right side is independent of $.

This heuristic reasoning has led to the conjecture that when Y is

simpler than X, every admissible mapping $ from X into Y must have at

least one point—inverse 
~~

1
y which achieves at least a certain minimal

complexity,  independent of •.

Results of this type already exist in the literature. If

C(S) = 2dim (S) where dim(S) is the classical topological dimension of S,

then (3) holds since it is equivalent to the assertion that any continuous map

from a space X into a space Y of smaller (finite) dimension must have a

point-inverse of dimension dim (X) — dim(Y) [ 3 ) .

For our purposes we need analogues of this, using a measure C(S)

related to 1~~lmogorov entropy . If S is an infinite subset of a compact

— 4 —
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metric space , and 6 > 0 , then a 6—dispersed subset of S is a set

X l~~X 2 l • • • ~~Xm such that d(x ,x , ) > 6 for all i � j .  Then, for C(S) we
i =

will use

( 4 )  N ( S , 6) = the max im um number of points in a 6—dispersed
subset of S

The rate of increase of N(S,6), as 6 decreases , describes the size or

capacity of S. If N(S,6) c6~ as 6 + 0, we say that S has entropy

dimension p. ~ri n—cell has entropy dimension i i .  Sets in R’~ with

fract ional  entropy dimension are easily constructed , and numerous examples can

be seen in the fascinating book by Mandelbrot [6].

If X and Y are metric spaces, with X compact, and • ~ C[X,Y], set
(5) M(~~,6) = max N(~~~

1
y,6) .

y CY

This is integer valued , and is the maximum 6 dispersion of any point—inverse

of p. Finally, with the conjecture (3) in mind , we say that C [ X ,Y) admits

a dispersion function K( 6) if it is true that X( 6) is an unbounded

increasing function of 6 such that for all sufficiently small 6 and any

mapping ~ in c[x,Y ] ,  M(~~,5) > x(6). In the next section, we show that

certain classes of mappings admit dispersion functions; we conjecture that

this is always the case when Y is simpler than X.

3. Dispersion mapping theorems

In this section, we obtain dispersion functions for the class of real

valued functions on a p—cell.

Let A and B be compact metric spaces, each arcwise connected , and let 
p

.

X = A x 5, with the metric

d (x
1
,x
2
) = d(a 1 ,a2

) + d (b 1 ,b2
) .

—5—- —---— ~~: 
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_____ A ~;-~~ - :  ~ Dn fu ~- - ~~~~- . ~cr  ~~~~~~~~~~~ ~s ciiven

( E )  -5) = ‘~ ie ~~.a ler  of ~(A , 5), N~F ,~~)

- - 2 :  ~ C X , 2 .  Fcc any  s ~ A , let B = - a }  B , Std COflS 1 -~ e1
a

ne ::- a~ e s e - s  ~( E  ) . Sin-ce  ~ is connecne~~, eacn :s an i~~cer ~. al I of
a S

r e a i s .  I t ‘ i n ter s~ c nao r .  of a l l  these  i n t e rva l s  is nore~r~ - t y ,  choose ~ real

the  : e e c t i~~- ~nd set S = ; 1 ( v ~ . Th en S is a su ~ se~ of

X t a n  meets each cf t he  sets Ba • Given > 0 , let N = ~ ( A , 6) a r . ~

ch oose n~t : tt s  a~ £ A , k = ~,2,...,N that are ~— -1Is~~~L s e ~~, src~ th e n

2 sc t h a t  x~ = (a , , t- , ) c S. These form a 5— l i sp e r s e d  set of ~

n~T- :nns of S, an~ ~-e have shown that

~‘( :, 5 ) > N(S, 6) > N = N( A, 6)

Suopose now that 
~ ‘a 

is empty, choose a’ and a” in A so thst

L.. and ‘a” are dis-cint , and a real number v lying between these

intervals. Pqain , set S = 2~~ (v); any arc in X joining a point of Ba,

a no~ n t of Ba~ 
must intersect S. Given 6 > 0, let N = N (B,6) and

c —  - -~ .e N points  b~ in B, 6—dispersed . Let ~ be an arc in A with end

irts a ’ ,a” and let be the arc ~ x {b~~} in X, connecting Ha l

and Xk a point of in S. Since 
~~

. and 
~~

. are everywhere

apart in X , the N points Xk are 6-dispersed in S and

v( :,-5) > N(S,-:) > N = N(B ,6), completing (6).

F’or a k—cell , we have N (Ik ,1) = 2k , N(Ik ,i/m) = (m + 1) k and in

general , N(I
k
,S) > ~—k If we factor a p-cell X as I~ = A x B, where A

and B are cells of dimension (p/2) and p — (p12] , Theorem 1 gives Us:

Torollar :~~ If I = ~O ,ll , the class C(I~~,R) has a dispersion function

~(5) with K(i/m) = ( m + l )~~~
’2] and, as 6 + 0, X(6) ~ ~~~~~~~

_______________________ 
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This estimate is not best possible. The heuristic argument in Section 2

suggests that a correct value ought to be K(6) N(I~~,6)/N(I,6)

We verify this next.

Theorem 2. A dispersion function for C[I~~,RJ is given by

K(6) = ((C/6)~~~
1

J where

(7) C = j 2~
p”2

We reduce the proof of this to a combinatorial problem on colored graphs,

which in turn is proved by induction on p. The elementary proof given below

was discovered after I had seen art elegant but much more complicated argument

by Andreas Blass, which also produced a far smaller value for C.

Proof: Let n be an integer large than 15 and 6 = 1/(n - 1).  In the p—

cell 1P, construct the regular rectangular lattice of vertices 
~k 

spaced

evenly with separation 6; if k is the multi—index ~~~~~~~~~~~~~~~ with

0 < k . < p, then 
~k 

= 6k. Let ~ c C[X ,R] and v
k 

= 
~~~~~ 

If these

n~ real numbers are arranged in increasing size, two possibilities arise.

Suppose that at least a third of these values coincide, all being equal to a

number v. In this case , S = (v)  contains a 6—dispersed subset of

size ~ P/3 , and M (~~, 6) > n~
’/3 > K (6) , as given by (7). Suppose now that

fewer than a third of the values Vk are coincident; then we can choose a

real number v , distinct from all the Vk but such that at least a third of

them are larger than v and a third are smaller . We will show that

S = ~~~~~(v )  obeys N(S,6) > X ( 6 ) . S

Color the lattice point 
~k 

“red” if •(Pk
) = V

k 
> v and “blue” if S

< v. In the p-cell X , a line se~~sent will be called an “ RB edge” if

it is parallel to an axis and its end points have different colors. Observe

that any RB edge must intersect 5, and that any two disjoint RB edge s

— 7 —
• -5 S~~
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a r e  e’.- e r v w h er e 6 a - - ~i t ;  ~~~~~~~ ~t ~~~
. -

~~~~~ r in d  N m - t :~ ll~.’ dzs~ o : r t

~ -~~ es in X , ~~~,n1l hove ~ 6—di st crse-r s~~ c~-t of S i size-

1~~mma. Color rh ~ nP r e g u l a r  l a n - ~~- :-~ p o i n t s  of t h e  p -cel  r-~— d  nr h - Iu e in

such a way that  at least ~~ arr- 3f eo:-h — olo r; U < ~ < Y2 .  Then , t h e

n umber of d i s jo in t  RB ed ges is at least

( 8 )
2 f ~~— 2  L-~~- }

Proof: If p = 2, then  the n 2 la t tic e  p o in t s  in t ne  u n i t  scuare f -c- inc n.

rows , each of -.4hich is e i ther  solid rei , so l id  blue , or m i x e d .  E er o  m i x e l

row con ta ins  an RB edge so that  if t he re are at le a s t  ~n m ix e d  ~ -s , t ne

lemra holds . suppose instead th a t  t h e r e  are fewer than  ~n m i x e d  nn ~~s.  Th e

remaining rows cannot all he sol id b lue for then  there would be less t h a n

( n ) ( ~~n)  = ~n 2 red vertices in the square , co n t r a d i c ti n o  the  h vp ot h e s~~s. :;~

conclude that the square must then have at least one solid red row and one

solid blue row , and jo ining correspond ing vertices, we obtain n RB edoes .

Suppose now that the lemm a has been proved for  p cel ls , and consider a

co lored (p  + 1 ) — c e l l  having at least vert ices  of each color . These

lie in n parallel sheets , each a p—cel l .  Call a sheet (mostl y) red if i t

contains fewer than Bn~ /2 blue ver t ices;  a blue sheet is the d u a l .  All

other sheets are called mixed. Suppose first that there are fe we r than ~~/2

mixed sheets in the (p + 1)—cell. If there were no red sheets , then t he to ta l

number of red vertices would be less than

p p p + l
~n / 2 ) ( 1  — ~/ 2 ) n  + ( n  — ~n / 2 ) ( ~~n / 2 )  < ~r.

which contradicts the hypotheses. Arguing symmet r ica l ly ,  there must exist a t

least one red sheet and at least one blue sheet. Match ing  these sheets , there

must be at least

n~ - 2 ( 8 / 2 ) n ~ = ( 1  -

-8-
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red vertices tha t  lie above or belcw a corresponding blue vertex . Jo:n~ nc

these , or thogonal ly  to the sheets , we produce (1 — ~)0 P d i s ’o~ nt PP e~~~es ,

and since this number exceeds what is required by (8), the lemma b .o l - i s .

The other a l ternat ive  is that there are at least ~n/2 mixed sheets

the ( p  + 1 )—ce l l .  We apply the lemma to each , observing that 2 has now beer

replaced by ~/2. Accordingly, each sheet contains at least

/22 f ( ~~/ 2 ) n 2  ~

disjoint RB edges. Among all the ~n/2 mixed sheets , there will be

2 (~~n/2 )~ =

2p (p~~~)/ 2

mutual ly  d i s jo in t  RB edges, thus proving the lemma.

To complete the proof of Theorem 2 , we apply the lemma with ~ = 1/3.

For the mapping class C [ I P , Rk ] , with p > k, the heuristic arcum eni t

suggests that a correct dispersion function ought to be of the form

— ( p — k )K ( 6 )  . However , we have not been able to obtain this , except as

shown above when k = 1. P~ r the record , we record the following incomplete

result which is easily established by a homotopy argument.

Theorem 3. If ~ c C [I~ ,R
2
] , with p > 3, then

M(4,1) > 2

4. The closure of

We return to the general problems discussed in the introduction dealina

with the size of the class of factorable mappings between X and Z. Let “,

Y, and z be metric spaces with X compact , and Y simpler than either

X or Z. Let P~, be the class of mappings F from X into Z that  can be

S 

- 5- — 

~~ 
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r~i r ,u-4 h Y , as shown below:

( 9 )  X F = f O ~~~~.

In t h i s  section , we examine the situation in which c~ is required to be

continuous , while f is unrestricted. We wish to f ind properties of the

class  which show that only a very restricted subclass of CrX ,Z] Lan he

u n i f o r m ly approximated by the mappings in F~~. In the next section , we

reverse the hypotheses , allowing t~ to be unrestricted but requir ing  tha t  the

func t ions  f obey a uniform Lipschitz condition .

Theorem 4~. Let Fk be a sequence of mappings for X into Z , converg ing

un i fo rmly to a continuous mapping g. Then, for any 6 > 0 ,

( 1 0)  M ( g , ó) > u r n  sup M ( F k , 6)
k -~~~~

Proof: Since M(F ,6) < N(X,6) for any F : X + Z, the right side of (10) is

an integer N, and there is a subsequence with M(F
k 

, 6)  = N for all n.

Let ~ c be the compact set of x =  (x l, x2 , . .. ,xN ) such that

Ix - x j  > 6 for i � j. Define a continuous function G on A by

= max Ig(x
1
) — g(x .)I. Suppose that F belongs to the subsequence

i ,j 
3

since M(F,t$) = N, we can choose a point x c A and z c z such

that F(x
~
) = z for all i = 1 ,2,.,.,N. Then, for any i and j ,

Ig (x1
) — g(x .iI < Ig (x~ ) — zi + z —

< g (x~ ) — F(x .)J + IF(x ) — g(x . )t

and G (x) < 2)lg — Fil . Since G is continuous on A and {F} converges

- o  g ,  there must exist x c A such that G(x) = U . Accordingly, there must

exist points X l? X2~~
.•
~~

XN? 6—dispersed, with g(x1 ) = g(x2) = ... = g(x~ ), S

showing that M(g,6) > N.

— 1 0 —

- - - - 5 - -  
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Return to the mapping diagram (9), and observe that if F = f 0 ~, then

any point—inverse for ~ is automatically a subset of a point—inverse for

F, so that M(F,6) > M (~~,6).

Theorem 5. Suppose that C[x,y] admits the dispersion function K(6).

Then, K(6) is also a dispersion function for the uniform closure of the

set F~ C[x,z]. In particular , if g is a continuous mapping from X

into Z with

(11) lim inf M(g,6) <
6-~o K ( )

then g cannot be approximated uniformly by mappings F r F~~.

Proof: Since M(~~,6) ~ X (6) for any M(F,6) > M ( 4 , 6) for any ~ in

C[X,Y], K( 6) is also a dispersion function for F,~. ?~ply ing the lemma , we

see that K(6) is automatically a dispersion function for the uniform closure

of F~, and must therefore be a lower bound for M(g,ô), if g can be

uniformly approximated by functions F in F~. (We note that the same

argument applies to subclasses of C(X,YJ; if a function K(6) can be shown

to be a dispersion function for the functions 4 in a subset S of

C[X ,Y ) ,  then it is also one for the uniform closure of the class of

mappings F X + Z which factor through I’ by means of some • ~ S.)

If we use the information in Theorem 2, we obtain :

O~rollary j. Let n > m > 1 and suppose that g is a continuous mapping

form In into ~~ such that

l ist inf 6M(g,6)1~~~~~~ < n/26-0 3(2

Then, g cannot be approximated uniformly on I~ by mappings of the

form F ( x )  = f(~~ ( x ) ) where f is an arbitrary function on P to and

$ is a continuous real valued function on In .

— 1 1 —

• 5 5 - - -~ .- -.-•--—S5-—-- - — — — -5 — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S”~~
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The a r g u m e n t  WS ’~ ’ . in  Theorem 4 can a l so  he used tC~ ~ t U ’ e  •?Y r -
_

ho unds for the d is tance  from a civen f u n c t i o n  -1 to ~he class F~., ~h&n 1)

hold s.

Cbrol lary 2. If M ( g , 6 ) < K ( 6  ) = N , then
_______  — 

d (g,F~ ) > 

~ 

mm max j g ( x . ) - g(x) I
x 1 , . . . , x~ i ,~~

6 dispersed
0

Proof: Since we must have M ( g , 6 )  < N — 1 , the f u n c t i o n  C , i r t r n d c e-~ in

the proof of Theorem 4, does not vanish in the set A and t h e r e f o r e  has  -~

positive min imum y. If F C F~ then , for an optimal choice of i an d  j ,

y <  fg (x .) — g(x H < 2 U g —

and y/2 is a lower bound for the distance from g to

amputation of the number y depends on the explicit nature of the

chosen function g. Homeomorphisms provide trivial illustrations. We have

M(~~,l) > ~ [n/ 2) 
for any • c C[I~~,RJ and n > 2. If ci is t n e  i d e n t it y  map

of 1n onto itself , then this argument shows that  its d i s t an c e  from F~ is

at least 1/2. If n > 3, Theorem 3 shows that the same holds for  the

class F 2~ ~~ does not seem l ikely that these bounds are sharp. We note
B

that g can be approximated by the mapping F £ F~ given by

F ( x )  = (w ,w,...,w) where x = (t 11 t 2 , . . ., t~~) and w = n
1 t , ,  so tha t

Hg — F i l  = (1/2 ) In for n even and (1/2 ) /n - ( 1/ n )  when n is odd .

5. Lipschitz mappings

We now take Z = X and examine the nature of mappings F of X in to

itself which can be factored through Y as F = f 0 ~ where ~ is now 
*

unrestricted but f is required to be more than merely continuous .

(12 ) X .
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As before, y is chosen of lower dimension than X. However , $ can now be

1—to— i , and if f were unrestricted , every map of X into X could be

* factored as shown , including the identity map. Of course, if f(Y) = X , f

must be a dimension increasing map. It is known that there exist continuous

maps of a k—cell onto an rn-cell for any n and m; the familiar Peano “space

filling curve” maps I onto 12 by a function f that is continuous, and is

1—to— i on an uncountable subset of I. According ly,  the identity map of 12

onto itself can be factored through I as f 0 $ with f continuous.

However , even a small degree of smoothness for f changes the situation, as

the next result shows. S

Theorem ~~,. Let X have entropy dimension p, and Y have entrqpy

dimension q, and let f be a mapping from Y into X of Lipschitz class

a. Then, f(Y) can have entropy dimension at most q/ cz, and thus cannot

be onto if a > q/p.

Proof: Let N ( f ( Y ) , 6) = N and choose y. C Y so that the points x . = f ( y . )

form a 6—dispersed set of N points in f(Y). If i 
~ 
j, then

6 ~~ lx~ — x .l = lf(y ~~) — f(
~~ )l 

£ ~ly~ 
—

and - y
~ l > (6/B)~~

’a
. Accordingly , the form a (6/B)~ ”~ dispersed

set of N points in Y. Since Y has entropy dimension q, N(Y,c) C

and therefore

a
N (f(Y),6) N < 

c
=

showing that f(Y) has entropy dimension at most q/ct.

We conjecture that this result is best possible, and that there are

mapp ings from In onto I~’ which belong to Lip( n/m) , for every n < m;

indeed , it is easily seen that the Polya example of a Peat-to map from (0,1]

onto i2 is in Lip 1/2, as required.
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Let F(ci) be the class of mappings F front X into )~ which factor

through Y as f 0 4t , with f in Lip a, but $ unrestricted. Since any

such map F obeys F(X) C f(Y)), we have an immediate corollary:

Corolla:~~~ If X and Y have entropy dimensions p and q, respectively,

with p > q, and if a > q/p, then F~(a) does not contain C [X ,X]:

indeed , no member of it cart obey F(X) X.

To obtain a corresponding result for uniform approximation , we must make

a slight change; let F~ (a 1B) be those F = f 0 $, where f C Lip( a,B ) ,

with a fixed Lipschitz constant B for all f.

Theorem 2. Let X and Y have entropy dimensions p and q, with

p > q, and suppose that ci > alp. Then, F~ (ci~B) is not uniformly dense

in C[X,X] ; every mapping g in C(X ,X] that can be uniformly approximated

by the class F~(a 1B) must fail to be onto, since g(X) will have entropy

dimension smaller than p.

Proof: Given 6 > 0 , choose a set of N 6—dispersed points in g ( X ) ,  where

N = N( g(X) , 6).  Suppose that there is F c F~( a,B) with h g — F II < 6/3.

Let = g(x1), and set y. = $( x .); then , if i � j,

6 £  Iz~ — 
~~ £ I~~(x~ ) — F(x .)I + lF(x~ ) — F(x .)I + lF (x~ ) —

< 21g — Fil  + — f ( Y
)

)l

and

6 a
j < B l y

~~~~~y . I

Accordingly, the y~ form a set of N points of Y that are (6/ (35) ) h h’a

dispersed , and

1’ 
_______N ( g ( X ) , 6) = N < N ( Y , ( c S /3B) F c i

) .

6
q/a

Eince C, B , and q are independent of ~~, this shows that g ( X )  has
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entropy dimension at most q/a, which by hypothesis is smaller than p, the

dimension of X.

There are many obvious remaining questions about the size and nature of

the sets F~ (a~B) and their relationship to the entire space C[X,X}.

Fur thermore , the complexity measure N(S,6) and those derived from it are no t.

the only ones of interest in this context. It would also be interesting to

examine these questions in a category different fran that of spaces and

continuous mappings . 
-

4.

— 1 5 —
-5 - —5- ~~~~—.—— .— - ---5 ~~~~~~ —-S-—=—--—- — -. - ~ - 5- - - - — - -  -5--- -~~

• 
- ~~~ -~~:~~

-
~~~~~~~

- -

- -

- 

~~~~~~~~~~~~~~~~ ~
— - 

- 

-. - - 

~

- - - . —

~~~~~~~~ 

—



REF ERENC ES

1. R. C. Buck, Approximate functional complexity , in Approximation

(pp. 303—307), Academic Press, 1976 (G. G. Lorentz, ed.).

2. 
________

, Approximate complexity and functional representation , tc ar;- Se~~~r

~ rt J. Math . Anal . Applic .

3. 7. Hurewicz & H. Wallman , Dimension Theory, Princeton University Press ,

1942.

4. C. G. Lorentz, ~~tric entropy, widths and superposition of functions ,

Amer. Math. Monthly 69 (1962), 469—4 85.

5. 
_________

, The 13—th problem of Hu bert, in Mathematical developoents

arising fran Hilbert Problems, v. 28, Proc . Syrnp . Pure Math. Amer . Math .

Soc . 1976.

6. B. Mandeibrot, Fractals: Form, Chance and Dimension, W. H. Freeman and

Co., 1977.

7. Yu. I. Martin , A Course in Mathematical Logic, ( Chap. 6) Springer Verlag ,

1977.

RCB/scr

________________  

— 1 6 —

—-5 

• 
-

- 
5 _
~~~~~~~~~~

_

- I

-- - S ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ — --



SECU RITY CLASSIFICA TION OF THIS PAGE (Wh.n Data EnI.r.d)

DE~’~~~ 
F%(%

~ IIuELrrATIAhJ D A~~E READ INSTRUCTIONS
n ~~~~~~ ~~~~~~ r~ i,~~I I~~ I~ L 

~~~ BEFORE COMPLETING FORM
I~~REPORT N U M B E R  2. GOVT ACCESSIO N NO. 3- RE C IP IENVS CATA LOG N U M B E R

‘-5
,

1994
4. TITLE(ond Subtitl.) S. TYPE OF RE PORT O PERIOD COVERED

Summary Report - no specific
DISPERS ION MAPPING THEOREMS reporting period

~~. PERFORM ING ORG. REPORT NUMBER

7. AUTHOR(s) B. CONTRACT OR GRANT NUMBER(S)

R. Creighton Buck DAAGZ9-75-C-0024 
‘

~~

MCS7B—07244
9. PERFORMING ORGANIZATION NAM E AND ADDRESS ID. PROGRAM ELEMENT. PROJECT , T A SK

- V - AR E A 6 WO RK U N I T  N U M B ERSMathematics Research Center, University of - -- . 6 - Spline Functions and610 Walnut Street Wisconsin Approximation Theory
Madison , Wisconsin 53706 ___________________________
II. COM~~~flt LI*4G OFFICE N A M E  A N D  ADDRESS 12. REPORT DATE

September 1979
See Item 18 below. *3. NUMBER OF PAGES

16
14. MONITORING ~GENCY NAME 6 AOORESS(II dlU.r.ni from ControlUn4 Otfic.) 15. SECURITY CLASS. this r•port)

UNCLASSIFIED
*5.. DECLASS IFICAT ION/ OOW NG RAO ING

SCHEDULE

*6. DISTR BUTt ON STATEMENT (of this R.port)

Approved for public release; distribution unlimited .

17. DISTRIBUTION STATEMENT (of ffi. abstract .nt•r.d in Block 20, if diff.t.n t from R.port)

S. SUPPLEMENTARY NOTES
U . S. Army Research Offi ce National Science Foundation
P. 0. Box 12211 - Washington , D. C. 20550
Research Triangle Park
I~brth Carolina 27709

*9. KEY WORDS (Continu. on r.v. r.. aids if n.c.a.a ,) wd ld.ntifi- by block numb.r)

mapping point-inverse,
complexity graph theory
entropy dimension chromatic
6—dispersed
Lipschitz mapping

20. A BST RACT (Cont inue on rav.ra. aid. It n.ca.amy a~d Id ntify by block numb.,)

Let X , Y and Z be metric spaces , with X compact and Y of lower

dimension than either X or Z. Let C(X,Z) be the class of continuous

mappings F from X into Z, and F~ the subclass of those F that can be

factored through Y in the form F = f o $ where $ c C [X ,Y~~. Using c-entrop~
—l ~ .- 1I

uniform estimates are obtained for the maximal size of point inverses $ (y) ,

DO jA N 73 1473 £OIT,ON OF I NOV OS IS OBSOLETE UNCLASSI FIED
SECUR ITY CLASSIFICATION OF TH IS PAGE (W1,.,i Data Ent .,.d) S

- “ ‘ ‘ - - --5— — - 5- _~f l. - --J a_g~.’ a -  -•.

-
~~~~~~~ ~~~~~~-(

--
~~~~ ,

.---.
~~~~

---5- - 

~~~~~f )  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

— 
_ _ _ _  

- -~~~~~~~~~~ .: .
~~~~~



20. ABSTRACT - Cont ’d.

for arbitrary 
~~~, and for special choices of Y. These are then used to study

the size of the uniform closure of F in C[X ,Z], and thus the class of

mappings F between X and Z that can be approximated uniformly by a

special family of simpler mappings . Similar results are obtained when f is

required to be Lipschitz , but ~ is unrestricted.

I

‘ I

- _ _ _ _

— — .. ~~~~— —  .~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . L 4. L .~~~~~~


